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Abstract

The numerical solution of three-dimensionalpollutant trans-

port is calculated by the method of second moments for advection

and’the method of cubic splines for diffusion. The governing

equation is solved by the technique of fractional steps. Topo-

graphy and variable mesh spacing are accounted for with coordinate

transformations. First estimate wind fields are obtained by

interpolation to grid points surrounding specific data locations.

Mass consistency is ensured by readjusting the three dimensional

wind field with a Sasaki variational technique. Numerical results

agree with predictions using conventional Gaussian plume relations

for ideal conditions. The numerical model is used to predict three-

dimensional transport of a release of tritium from the Savannah

River Plant on May 2, 1974. Predicted ground level air concentration

at 56km from the release point is within 38% of the experimentally

measured value.
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INTRODUCTION

The transport of radioactive and nonradioactive pollutants

released from a source requires accurate predictions in order

to assess potential hazards to the public. Environmental

modeling of such releases is necessary not only for atmospheric

problems, but also for problems dealing with estuary, river,

stream, and ground water flows.

Under ideal conditions, the dispersion of pollutant con-

centration from a source can be calculated by analytical methods.

However, analytical methods are not flexible enough to handle

complex cases of three-dimensional,time-dependent dispersion

where numerous parameters are constantly changing. Numerical

models, while more flexible in solving complex transport problems,

suffer from numerical dispersion errors.

In an effort to minimize numerical errors, a three-

dimensional second-momentsmethod calculates pollutant

advection. This method is based on the calculation of moment

distributions of a concentration within a cell (Egan and

Mahoney, [1]; Pedersen and Prahm [2]; Fischer, [3]; Pepper and

Long, [4]). By summing the moments over the entire solution

domain, and using a Lagrangian advection scheme, a concentration

field can be transported without numerical

Because the method maintains subgrid-scale

and area source releases can be calculated
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computational damping. To reduce computer programming com-

plexity and computation time, the technique of fractional steps

(Yanenko [s]) is used to solve the three-dimensional advestion

equation.

Three dimensional diffusion is solved by the method of

cubic”splines (Price and McPherson, [6]; Rubin and Graves [7];

Ahlberg, et al., [8]; Fyfe, [9]). The cubic spline method is

based on continuous-curvaturecubic spline relations used as

interpolation functions for first and second derivative terms.

This method was preferred to other methods because ~f its

unique characteristics: 1) the governing matrix system is

always tri-diagonal; 2) second order derivatives are second

order accurate even with large irregularities in mesh spacing;

and 3) derivative boundary conditions can be applied with less

difficulty than with conventional finite difference schemes.

First order derivatives are fourth order accurate for uniform

mesh and third order accurate for non-uniform mesh. After

solution of the diffusion terms, the first and second moments

are recalculated to ensure continuity with the advection terms.

Atmospheric concentrations are estimated to a distance of

100 km from the source with the three-dimensional second-moment/

cubic spline technique. Mesoscale analysis of winds, tempera-

tures, and eddy diffusivities are obtained from a network of

towers situated throughout the 770 square kilometers of the
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Savannah

data are

field is

River Plant site near Aiken, South Carolina. The wind

continuously updated, and the three-dimensionalwind

interpolated at all grid points. In order to make the

wind field mass consistent, a Sasaki variational analysis

(Lagrangianmultipliers) is used to adjust the velocity components

throughout the solution domain. The Lagrangian multipliers are

calculated by the

(SIP).

Ground level

experimental data

tritium on May 2,

three-dimensional strongly implicit procedure

predictions for tritium are compared with the

obtained after the accidental release of

1974 from SRP. The effect of topography on

plume emissions is also examined under ideal conditions. Numeri-

cal results are compared with values from the conventional

Gaussian plume relations.

Mathematical Model

The governing equation for three-dimensional,time-

dependent pollutant transport can be written as

3C
E + fi”vc= V“(tvc) + s

(1)

where C is the concentration (gm/m3),B is the vector velocity

field (m/see), ~ is the directionally dependent eddy diffusivity

(exchange coefficient of diffusion, m2/see), and S represents

the source and sink terms associated with precipitation scavenging,

source emission, deposition,and chemical reaction.

The partial differential equation
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established by Equation 1 is solved within the physical region,

< Y < YN, h(x,y) < z < H for t > 0, where‘w <x<xE, y~

‘w’ ‘E> YS3 YN are the west, east, south, and north lateral

boundaries within the x-y plane, h(x,y) is the ground elevation

at (x,y), and H is the elevation of the upper limit for vertical

mixing (lid). An anaiogous equation which includes a variable

mixing height, H(x,y,t), is used by Reynolds, et al. [10].

Because this study is concerned with releases which occur over

only a few hours, the variation of the mixing height is assumed

to be negligible.

The initial condition on Equation 1 is that the mean

concentration (Co) is everywhere O

Co(x,y,z,t) = o (2)

The mean concentration can also be specified at all locations

as some initial background value. The following set of

boundary conditions constrain the solution to the domain of

interest:

for z = h(x,y),

-ivco”;h = fo

for z = H,

-kvco”;H = o

for x = Xw, XE and y = YN7 YS

V*:>(), -i”vCo”: = o

;.;<0, (Uco-ivco)”;= OCO’*;

(3)

(4)

(5)

(6)
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where f. is the mass flux of concentration at the surface

(for puffs or plumes, fo ~ O), fihis the unit vector normal

to the surface while fiHis the outwardly directed unit

vector normal to the surface defined by the inversion base.

The outwardly directed unit vector normal to the horizontal

boundary is fi,and C~.is the mean concentration just outside

the

the

The

solution domain.

The first condition specifies the diffusive component of

mass flux to be equal to zero when flow is out of the domain.

second condition requires continuity of mass flux across a

boundary when flow is entering the solution domain. The lack of

well posed boundary conditions does not cause serious problems

since the advection terms in Equation 1 generally dominate the

diffusive terms.

To account for deposition velocities at the surface, the

flux at the ground can be expressed in terms of a deposition

velocity (Calder, [11]) such that

pc ‘ Vgc +

where v
g
is the actual

velocity, and r is the

value of r from O to 1

(7)

settling velocity, p is the deposition

reflection coefficient. Varying the

will simulate the effect of losses at

the surface by deposition (Rae, [12]).

To eliminate irregularity of the surface, the following
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changes of variables are made:

T t,= x = XW-XE, ~= yN-y~—

x-x
C = + , ~ = H-h(x,y)

—

(8)

Y-Y~ Z-h(x,y)~ .7, p = z
— —

A similar change of variables was performed by Reynolds,

et al, [10]. After some algebra, Equation 1 becomes

where

(lo)

The use of Equation 8 alters the physical domain from

dimensional to non-dimensional scales which vary from O

permitting the solution to be independent of local site

characteristics.

to 1,

A subjective analysis and interpolation scheme is used to
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calculate a first guess wind field throughout the three-dimensional

region based on available data, i.e., wind speeds and directions

obtained from instrumented towers. The wind field is then

checked to determine mass consistency throughout the three

dimensional domain. A mass consistent wind field model is

used to calculate corrections to the interpolated wind vectors

at each node point such that

where ~ is given by Equation 10, U1 = UZ and V1 = VZ. Based— .

on the technique used by Dickerson [13] and Sherman [14], a

Sasaki variational treatment of the continuity Equation 14 is

performed such that the integral (I)

is minimized. The constant al is defined as al = 1/20! where

a! is the error variance of the horizontal velocities. The

constant aL is defined as aL = l/20~, where a; is the error

variance in the vertical velocity. U;, V!, and fio are the

interpolated velocities, and A is the Lagrangian multiplier

and is a function of ~, q, and p. Minimization of Equation 12

is accomplished when the Euler equations of I vanish. The

Euler equations are given as
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(13)

The unknown Lagrangian multipliers are obtained by com-

bining Equation 13 with Equation 11. This gives the equation

(14)

used in Equation 13

If (al/a2)2+~,

vertical velocity

weight is given to

Solutions for A from Equation 14 are then

to give the final adjusted wind vectors.

more weight is given to adjustment of the

field. Conversely, as (al/az)2+ 0, more

adjustment of the horizontal velocity field. Reasonable

horizontal and vertical adjusted fluxes have been obtained

by Dickerson[13] and Sherman [14] if (02/01)2 is in the

neighborhood of 10-4.

A great deal has yet to be understood about the nature of

turbulence under variable conditions. The problem of specifi-

cation of the vertical diffusion coefficient, K
z’

is particularly

important to the dispersion of pollutant within the mixed

layer. Little is known about the behavior of Kz except near

the earthls surface (Shir and Shieh, [15]; Pasquill, [16];

Tennekes and Lumley, [17]). Horizontal diffusion is generally

of secondary importance in atmospheric dispersion problems

-1o-



due to the predominance of the horizontal advection terms in

the governing equation. However, atmospheric stability has

great influence on the generation and decay of turbulence

(Kz) in the atmosphere.

density) stratification

sparsity of atmospheric

Hence, the effect of temperature (or

must also be known. Unfortunately,

field data hinders verification of

more sophisticated closure schemes.

Based on Yuls [18] analysis of 14 different models for

determining the vertical diffusion coefficient, an O’Brien [19]

K-theory model is used in conjunction with similarity theory.

Surface similarity theory calculates Kz from the Monin-Obukhov

universal relations with measured wind velocities and temperatures

from an instrumented TV tower in the transition layer region

(Z ‘60m). The O!Brien cubic profile then calculates the

vertical diffusivity between the transition layer region and the

top of the mixing layer. This procedure was used by Pepper and

Kern [20] to model atmospheric dispersion with linear finite

element and cubic spline methods.

A set of universal functions, @Mand $T, must be supplied

along with the Obukhov atmospheric stability length, L, to

obtain the vertical exchange coefficients in the transition

layer. These parameters are functions of the derivatives of

temperature, wind velocity, and

and velocity friction values at

also unknowns.

humidity. Likewise, temperature

the surface, 0’ and U*, are
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Atmospheric stability conditions greatly influence these

parameters; one set of empirical relations is used for unstable

atmospheres, while a different set is used for stable atmos-

pheres. Hence, two general sets of relations must be solved

to account for the transition from one stability category to

the other. An efficient technique has been devised for solving

this system of equations by Long and Shaffer [21]. The

integrated profile relations are solved by a pseudo-parameter

which combines the velocity gradients with the temperature

gradients (analogousto the relationships used by Businger,

et al., [22]) such that the stability length, L, can be

calculated in a rapidly converging iteration sequence. Once L

is known, e*, U*, and the remaining unknown derivatives can

be easily solved.

~ and KT (exchange coefficients for momentum and heat,

respectively) are then solved from the relations

(15a)

where K is

determined

von Karman’s constant with $M (Z/L) and @T (z/L)

from empirical relations and the iteration scheme.

In unstable conditions, KH > ~ = Kz is used for the vertical

exchange coefficients, while K
H = Kz > ~ is used in stable

conditions. Equation 15a is assumed to be valid up to a physical

height Z = 62 m (stack height). At the 62-m height, the OtBrien
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[19] cubic profile is used to generate KZ values, such that

KZ reaches a maximum above the 62-m height and gradually

decreases to 0.1 m2 see-l at the top of the mixed layer. The

O’Brien cubic profile is

(){ [( )aKz 2(K
Z-H 2 K - K ‘62-KZH)

‘z
= KZ62 +

H-62 ZGZ
+ (Z-62) ~ 62 +

‘H H-62 -

(15b)

Vertical mesh spacing is based on the vertical spacing

of the instruments located on the TV tower and the height of

the mixed layer. Ten levels are normally used with Z values set

to heights of 2 m, 10 m, 36 m, 62 m, 137 m, 243 m, and 335 m;

the

the

‘remainingthree levels are equally incremented according

height of the mixed layer.

to

Horizontal diffusion for plumes and puffs is determined

~do2
as follows: (1) plumes: Kx = Ky=–—2 d;

with o = auax~
Y

where a and 6 are constants selected in accordance with Pasquill

[16] type stability categories; Oa is the standard deviation of

the azimuthal wind fluctuation (obtained from TV tower data) -

in the absence of u a = a(Ut)@ (Lange, [23]); (2) puffs:
a’ y

Kx = Ky = c’/3 ay4/3 where & is the turbulent eddy dissipation

rate based on stability category (Crawford, [24]).

}
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The Numerical Model

In order to overcome excessive core requirements, Equation 9

is split into a series of one-dimensional equations by the method

of fractional steps, (Yanenko [5]). The method of

steps has been used by

Reynolds et al., [10],

dimensional transport.

Long and Shaffer [21], Long

and Pepper and Kern [20] in

Equation 9 is divided into

fractional

and Pepper [25],

modeling multi-

a set of

equations which are integrated in succession over one time step.

Upon completion of the integrations, the full three dimensional

equation is solved over one time step. Equation 9 is split into

the’following series of equations:

(16)

(17)
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–=~2~ [KXFI ‘k~[K,F1acn+1
2T —

(19)

Successive solutions to Equations 16 through 19 give the

final solution to Equation 9 at one time step.

Fortunately, Equation set 16-19 can be reduced to only

Equations 16 and 19 under most conditions. If changes in

ground elevation are gradual (as they are around SRP), the

derivatives ~h/aC, ah/au, a~/aC, and a~/an are small compared

to other terms in the equation set. Hence, the diffusion

te~s containing A
t
and An (Equations 17 and 18) are neglected.

Although there is some error in deleting these terms when

the terrain is highly irregular, Equations 17 and 18 involve

only horizontal diffusion, which is generally negligible in

comparison to horizontal advection. Thus, the total error

incurred is considered to be minimal (results obtained with

the entire equation set versus results obtained with only

Equations 16 and 19 were nearly identical).

In an effort to minimize numerical errors, the three-

dimensional method-of-moments is used to calculate the

advection of pollutant concentration, Equation 16. This

method is based on the calculation of moment distributions
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of a concentration within a cell, (Egan 6 !.Iahoney[I]).

The method calculates the zeroth, first, and second

moments of the concentration within a mesh and then advects

and diffuses the concentration by maintaining conservation of

the moments. The moments correspond to the mean concentration,

center of mass, and scaled distribution variance (moment of

inertia), respectively, and are given by

0.5

-0.5

0.5

Fi =
s

C(5i)5id~/Ci

-0.5

0.5

R: = 12
/

C(gi) ($i-Fi)2d~/Ci

-0.5

where ~i denotes the relative displacement of

the ith cell from the center of the cell. Si

(20)

(21)

(22)

material within

varies from -0.5

to +0.5 corresponding to the left and right hand extreme

boundaries of a cell. The length dimensions of the cell are

non-dimensionalizedby the grid element length (width or

height, depending on the direction of calculation). For

simple rectangular concentration distributions, i.e., rec-

tangular mesh geometry, the integrals can be readily evaluated

by summation for each grid element in terms of the concentration

-16-



distributions of the portions remaining and newly transported for

each successive time step. The advection of a single cell of

concentration is shown in Figure 1. The single cell of con-

centration is advected accurately with time and without numerical

dispersion or computational damping errors. The advection of a

single cell of concentration in two dimensions is shown in

Figure 2 with similar results. Further tests with two and three

dimensional advection of both single and multiple cells of

concentration showed no numerical dispersion errors and

minimal damping (Pepper and Long, [4]).

Tests on hyperbolic equations with both finite difference

and finite element techniques by Long and Pepper [25] and

Baker, et al., [26] showed either severe spreading of the

concentration (due to computational damping) or generation of

wave (plus and minus) packets of concentration (due to

numerical dispersion). Since the immediate dispersion of

concentration is essentially one of advection, the second moment

method is amply suited for the solution of the three-dimen-

sional equation of concentration transport.

The downwind transfer of concentration by advection depends

upon the value of the portioning parameter, P:, where P: is

defined as

Pi =
(

where y is

tration is

L L

Ri
Fi+Y+—-

2
0.5)lRi (23)

the Courant number. If pi < 0, none of the concen-

advected into the i+l cell. If pi > 0, all of

-17-



the concentration is advected into the downwind cell. For

O < Pi < 1, a fraction of the concentration PiCi is advected

while (l-Pi) Ci remains behind. Figure 3 shows the scaling

parameters involved in the advection of a rectangular concen-

tration distribution during one time step. The center of

mass of the distribution (for one dimensional advection) is

given at (-0.5 + PiRi/2) relative to the center of the i + 1

cell and has a horizontal spread equal to Pi/Ri in the new

cell. The amount left in cell i has a center of mass at

(l-Ri + piRi)/2 with a horizontal spread of (l-Pi)Ri.

Extension of the method of moments to two and three dimen-

sions is straightforwardas based on the rules for the one

dimensional example just discussed. The ~eroth through

second moments are evaluated from concentration distributions

advected from several adjacent cells in multi-dimensional flow.

The computationalprocedure then determines which neighboring

cells contribute to the moment calculation and computes the new

values for each cell. Thus, the moment distributions are

calculated using

c
n+1

= xc
i

ZCiFi
F
n+1 =—

“n+1
L

ZCiRi2
R;n+l =

J
+ 12 ZciCn+l f’i - ‘~+1)2

(24)

(25)

(26)
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where n+l denotes values at the new time step and m denotes

cell location in the computational mesh.

Equation 19 is solved using cubic splines. Cubic spline

methods have been used by Price and McPherson [6], Chawla, et al.,

[27], Rubin and Khosla [28], Rubin and Graves [7], Purnell [29],

Long and Pepper [25], and Pepper and Kern [20]. The spline

representation in a Galerkin method has been used by Hsu [30] in

solving boundary layer flow problems. Variable interpolation

schemes using cubics and quintics were also analyzed by Price,

et al. [31]. High order accuracy was likewise obtained in solving

the one-dimensional advection-diffusionequation.

The method of cubic splines can best be demonstrated through

solution of the simple one-dimensional advection-diffusion

equation

(27)

By writing the time dependent derivative as a forward-in-

time difference term and the spatial derivatives as a cubic

spline passing through grid point, xi, Equation 27 can be

rewritten as

n+1
Ci - c;

At
+ “nf. - K S. = O

11 1 (28)

where the first derivative has been replaced by the unknown

variable fi and the second derivative by Si. Based on the

procedure outlined by Rubin and Graves [7], fi and Si are

written as tri-diagonal relations

-19-



(29)

Ax Ax + Ax+ Ax
ysil+ -3 Si + $ Si+l

c. -’C, c, - c, ~1+1=
Ax+ - Ax (30)

where Ax- = xi - xi_l and Ax+ = Xi+l - xi. If the right hand

side values are known, solutions for fi and S, can be easily

found using a tri-diagonal inversion algorithm.

The boundary conditions associated with Equations 29 and

30 specify that either fi or Si is equal to a known value or

is set equal to zero. This particular feature of cubic spline

methods is advantageous over more conventional finite difference

boundary value approximations (particularlyfirst order forward-

in-space differences). The spline derivatives at a point are

linked to their neighbors in a

diagonal nature. Equations 29

to linear finite element basis

nodes [20].

global sense by their tri-

and 30 are somewhat

functions assembled

Equation 19 is solved in the following way:

analogous

over adjacent

at***
1) Let mi = Kz ~

i

-20-



2) Solve for mi

$+2mi($:$+)+F

‘& Fi+l-ci)++(ci-ci-l) (31,

ami
3) Once mi is obtained, let ii = >—

z ap

n+l ***
Ci - ‘i

4) Solve
At -Ii=o

5) Repeat steps 1-4 for the remaining horizontal diffusion
terms.

If the diffusion coefficient is constant, the single tri-

diagonal relation for the second derivative term is more

efficient to use, Equation 30. (If the advection terms are

zero and the problem is one of only diffusion, the cross

derivative terms appearing in Equations 17 and 18 can be solved

using two first derivative cubic spline relations in succession.)

To maintain conservation of the zeroth, first, and

second moment distribution, the moments are recalculated after

Equation 19 is solved. The first and second moments are

recalculated by the following general relations (using the

one dimensional example for vertical diffusion):

-21-



n+1
‘k = [(c; F: 1 - %+1 - y-l ) + ak+l C;+l + ‘;+1

1/’n+1+‘k-l C;-l ‘;-l Ck

(R:Y+l={c:[(R’):+12(F:-F:+1)21 (1-‘k+l - ‘k-l)

[()n+ %-1 C:-l ‘2 k-1 +

+ 12
( ) 1}/’n+l2 n+1
‘:-l - ‘k-1 Ck (33)

To further enhance resolution of the peak concentration

and to prevent unwanted (or inaccurate) horizontal spread, a

slightly modified version of the second moment solution is

used. Based on the technique developed by Pedersen and

Prahm [2], a width correction procedure is used to check the

lateral spread of concentrationwithin each’cell. If R~+l is

n+l
greater than Fi ~o.s n+1

, then Ri I~().s. This

procedure reduces the small amounts of lateral dispersion

errors produced from a nonuniform concentration field and

an irregular flow field. A detailed account of the effect of

the width correction procedure on the second moment method under

variable conditions is given by Pepper and Long [4].

Equation 14 is solved by a three dimensional strongly

implicit

has been

procedure (SIP). SIP, first developed by Stone [32],

used predominantly to calculate two dimensional
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viscous flow problems (Bozeman and Dalton, [33]; Jacobs, [34];

Lin, et al., [35]; and Pepper and Harris, [36]). SIP has also

been used to model time-dependent,mesoscale concentrations in

two dimensions by Pepper and Kern [37]. The three dimensional

SIP has been used by Weinstein, et al., [38] for multi-phase

reservoir flow problems and by Long and Pepper [25] to cal-

culate atmospheric advection of concentration. Pepper and

Harris [39] have used a three-dimensionalSIP to calculate

free convective flow in a closed container.

SIP requires Equation 14 to be separated into discrete

finite differences by forward in time, centered in space

approximations for the derivative terms. The separation creates

a sparse matrix banded by seven diagonal elements.

The discretized form of Equation 14 is written as

D An+l
n+1

+FA.
n+1

+BA.
n+1

l-l,j,k l+l,j,k l,j-l,k
+HA.

l-j+l,k

n+1
+TA.

n+1
+SA.

n+1
l,j,k-1 l,j,k+l + E ‘i,j,k

= qf,j,k (34)

where the coefficients D, F, B, H, T, S, E, and q are defined as

D= 2/((A~+ + A~-)A&_)

F = 2/((A&+ + A~_)A~+)

B = 2/((Av+ + Arl-)ArI_)

H = 2/((ArI++ ATl_)Arl+)

T = 20(a;/a;)/((AP++ AP_)AP-)

S = 2“(a~/al)/((AP++ AP-)AP+)
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E = -2/(A~+ + A~-)2 - 2/(Aq+ + Aq )2

-2(a:/at)/(Ap+ + Ap-)2

q“ “l,j,k (
= 2a; fxo + f + f

yo Zo)

where A&+ = Si+l - Si, AC = Si - $
i-l’ ‘n+ = ‘j+~ -

The terms fxo, f
yo’

and f
ZIJ

represent the continuity

first derivatives

(35)

etc.
‘j’

equation

f
= au. = avo = awo

xfJ-V fyo-randfzo - ~

These first derivative terms are obtained from the interpolated

wind vectors using the cubic spline relation given by Equation

29.

Equation 34 can be rewritten in matrix form as

[M]{A} = {q} (36a)

where [M] is the sparse coefficient matrix containing seven

diagonals, {A} is the column matrix of unknown values of the

Lagrangian multiples, and {Q} is the column matrix of explicitly

known values (term evaluated at the n
th

iterative step). SIP

alters matrix [M] from a seven diagonal matrix to a 13 diagonal

matrix [M?]. This allows

series of lower and upper

can be efficiently solved

The three-dimensional

matrix [M’] to be factored into a

diagonal matrices, [L] and [U], which

by elimination techniques.

SIP algorithms are discussed in

more detail by Weinstein, et al. [38] and Pepper and Harris

[39]. Round-off errors are reduced by solving {A} values

in residual form such that
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[M’]{AAn+l] = {R} (36b)

where {R} = {q} - [M]{A} and AAn+l = An+l -An. Once AAn+l

n+1
is solved, A can be obtained. Weinstein, et al [39] com-

pared the accuracy of SIP with an ADI procedure, and found

that: single precision SIP solutions were comparable to

double precision ADI solutions; SIP is less sensitive to

rounding errors than ~1 procedures; and although SIP requires

larger iteration time than ADI, fewer iterations are needed

to converge the

[35] and Pepper

Readjustment of

solution. Similar studies made by Lin, et al.

and Harris [36] support these observations.

the interpolated wind field to a mass consistent “

wind field required only a few iterations.*

The initial dispersion of emissions from point or area

sources can be either user input according to the cell volume

source or obtained using a Gaussian puff/plume format. Pas-

quill [16] established that the Gaussian puff/plume analytical

solution of Equation 1 gives reliable results to a distance

of several kilometers from the source. Beyond this distance,

the variability of the wind field with time, as well as the

three dimensional nature of the winds (particularlyin rough

terrain where recirculation or flow separation may occur)

severely limits the applicability of the analytical solution.

*Direct solutions using cyclic-reductioqfast-Fourier transform
methods can also effectively solve Equation 14.
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However, by incorporating the contributions from a point

source into the numerical advection scheme, the three dimen-

sional model can accurately maintain the subgrid resolution

of the emission within a grid element. Best results are

obtained when the puff or plume has grown large enough to

be approximated by a few shallow regions of uniform concentra-

tion.

The computational domain consists of 10,890 cells; 33

cells in the longitudinal direction (c), 33 cells in the lateral

direction (rI),and 10 levels in the vertical direction (p).

Mesh spacing can either be arbitrarily set (such as telescoping

grid network) or equally spaced with A~ = AT-I.The vertical

mesh spacing is based on the ground level values for topography

(ZO = h(x,y)) and the height of the lid (ZIO = H). User input

values for the remaining levels, i.e., levels corresponding

instrumented tower locations, are automatically transformed

to non-dimensional values such that O < p < 1 throughout

the computational domain. The stability criteria, yi < 1,*

is satisfied by checking yi at every time step. Ifyi > 1,

to

the time step, At, is reduced such that y. < 1. This stability
1

criteria must be met since the advection scheme is explicit.

If the height of the mixed layer, H, varies with time,

(H = H(x,y,z,t)), a slightly more detailed computational

sequence must be used since derivatives of H would appear

throughout the equation. The computationalprocedure is

solved using the JOSHUA

*yi ❑ yx = UAt/Ax> y =
Y

data management system

VAt/AY, yz = WAt/AZ
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SRL (Honeck, [40]). The JOSHUA network allows the computa-

tional modules to be efficiently handled without significant

storage problems. A typical problem of a release, calculated

within the computational domain, requires approximately 480 K

bytes. Computational running times are generally under two

minutes on an IBM-360/19S for a real time simulation of several

hours. Optimization of the code would likely reduce storage re-

quirements as well as speed up computation. The JOSHUA network

is coupled with a PDP-1140 minicomputer which accumulates real

time data from the tower network at SRP. The coupling allows

the vector wind field and concentration isopleths to be

simultaneouslydisplayed on a cathode ray tube per time step.

Horizontal Wind Fields Over SRP

Surface meteorological observations are available hourly

from the National Weather Service stations in the southeastern

United States. Twice-a-day,upper-atmospheric observations

are available from Athens, Georgia, and Charleston, South

Carolina, (SRP lies on a line about half-way between these

two stations). Wind speed data, bivane direction data, and

temperature data are available from various levels up to

335 m from sensors mounted on the WJBF-TV tower located

near SRP. The wind speed and bivane direction data are also

available from seven 62-m towers located at the production
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areas of the SRP (Figure 4). The SRP and the National

Weather Service stations in the southeastern United States

provide the initial and boundary condition data for the

analyses used as input to the transport and diffusion model.

Gridded analyses are derived from the data to provide

fields of wind vectors over three nests of grids. The analysis

technique uses a scan radius determined by the density of

the data. Data influencing, grid-point values are proportional

to the exponential of the inverse square of the distance be-

tween the data and grid point (Fleming, [41]).

The three nests of grids, all centered on SRP, contain

33 x 33 grid points and are sub-sets of the National Weather

Service’s National Meteorological Center (NMC) square, polar

stereographic, computational grid. The largest grid has a

grid spacing of 1/8 the NMC grid (for a grid separation of

about 40 km). The next nest has a grid spacing of 1/32 of

the NMC grid, (or a spacing of about 10 km). The smallest

grid has a grid spacing of 1/128 of the NMC grid (or a 2.5 km

separation). The smallest grid (used for these calculations)

can be uniform or nonuniform. The largest grid is used to

obtain the best first guess for the next smaller grid and

to incorporate the maximum amount of National Weather Service

synoptic data. The 10 km grid analysis provides the first

guess for the small grid nest. Concentration calculations

are performed using the wind fields of the small grid nest.
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RESULTS

To assess numerical accuracy, a simple test was conducted

using six cell sources, each with a unit release advected in a

two dimensional

numerical model

wind field. Figure 5 compares results of the

with those of an analytical solution (Pederson

and Prahm, [2]). The results are nearly identical. The

computed peak centerline values as well as the width of the

plume are accurately maintained. All remaining values in the

computational domain are zero (simple finite difference

procedures tend to produce wider plume width with less centerline

concentration). Results are also identical to numerical

values obtained by Pedersen and Prahm [2] using a two

dimensional method of moments. In both methods, a width

correction procedure has been used to eliminate small amounts

of lateral dispersion at the plume edge, [4].

A test of two dimensional advection-diffusionin the x-y

plane is shown in Figure 6 for a continuous area source

emission consisting of four cells each containing 250 units.

Analytical results (assumingFickian diffusion) were obtained

from Christensen and Prahm [42]. Lateral diffusion (Ky)

was set equal to 0.10 with Kx = Kz = O. Advection occurred

only in the longitudinal direction (~) with U = 1, V = W = O.

An identical comparison was made by Christensen and Prahm [42]

using a pseudospectral method. Cell values obtained by the

numerical model agree reasonably well with cell values obtained

from the analytical model. Peak centerline values are predicted

-29-



by the numerical model within 3 percent (average) of the

analytical values. The lateral spread of concentration is nearly

identical, deviating by only a few percent in each individual

cell value.

The effect of surface irregularity on a continuous elevated

emission is shown in Figures 7-9. Figure 7 shows the elevation

distribution of the ground plane; a continuous release was

assumed to occur at a height of 200 m at the left-center cell

(denotedwith a dot). A 200 m peak surface elevation occurs

11 km downwind. The height of the lid is constant at 650 m.

Equal grid spacing is used in the x-y plane spanning a

400 km2 area, with AX = AY = 1000 m; vertical grid spacing

is equally incremented in 100 m intervals. A continuous

emission rate of 1 gm/sec (Q) is used. Atmospheric stability

conditions are assumed to be neutral: K = 33 m2/sec through-
Y

out the domain and Kz = f(z) (Ky and Kz obtained from Pasquill

stability

3)). The

Hence, at

curves at 1000 m distances (Slade, [43] - Chapter

initial velocity field is given as

()

.14
U=5.03

V=w=o (37)

a source elevation of 200 m, the velocity field is

given as 3200 = (13.15, O, O) m/see.

Concentration isopleths and the computed mass-consistent,

vector-wind field are shown in Figure 7 in the midplane of

the computational domain. The length of an individual wind
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vector denotes the magnitude of the wind speed.* The wind

field is held constant after readjustment and concentration

isopleths are drawn for steady state conditions. For steady

state, non varying winds (~ = 13.15, 0, O) m/see, and

flat surfaces, concentration isopleths generally become

smoothly distributed throughout the vertical plane. Topo-

graphy causes the vertical distributions to be perturbed

at locations corresponding to surface peaks.

The effect of topography is more evident in Figure 9

where ground level centerline C/Q values are plotted as a

function of longitudinal distance. The analytical solution

was obtained from the relation (Kao, [44])

- & - ‘Z-H)’( [Z+fi-2h(x,y)]2

u
2U;(X)+ e - 20;(x)

c= Y e )
27TUOY(X)OZ(X)e (38)

where o;(x) = 2Kyt, O:(X) = 2Kzt, fiis the height of release,

h(x,y) is the height of the topographic surface, and Z>h(x,y).

For ground level centerline values and Q = 1 gm/sec,Equation

38 reduces to

(39)

*Vertical scale increased to enhance visualization of small
vertical velocities.
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For ground level centerline values without topography, Equation

39 reduces to the standard Gaussian plume formula

(40)

Relations used for the standard deviations oy and az are conjec-

tural. However, to be consistent in the comparison, ay and az

values are calculated from Ky and Kz values as in

model (undermore realistic conditions, ay and az

determined as a function of longitudinal distance

the numerical

values could be

- Smith, [45]).

Peak ground level values occur at locations corresponding to

surface peaks, contrary to the smooth profile given by Equation 40.

Centerline values are approximately an order of magnitude greater

than values obtained without inclusion of topography.

The final test case corresponds to prediction of an actual

release of tritium from the Savannah River Plant (SRP) for

which experimental data are available. Averaged over the four-

minute release period, tritium was present in the exhaust

air at a concentration of approximately 13 ppm by volume.

Because of this low dilution, the discharge was assumed to

behave as a neutral gas with no bouyancy. At the time of the

release, a polar front was located approximately 80 km north

of SRP (Figure 10). This front represented a dividing line

between two different wind fields present in the Carolinas during

and after the release. Winds below the front were predominantly

from the southwest. Sky conditions were generally overcast

with precipitation north of the front.

-32-



The vector wind field and initial concentration distribution

at the 62-m height over SRP are shown in Figure “11. The overcast

skies and generally steady winds produced atmospheric diffusion

corresponding to Pasquill Category D (slightly stable). Measure-

ments obtained with an acoustic sounder indicated that the

height of the mixed layer was approximately 610 m. Hence, the

concentration puff was ‘assumedto be transported and diffused

by the wind field below this height. The solution was initiated

with the source term set equal to 4.79 x 105 Ci. Wind field

data provided hourly by the National Weather Service and the

meso-tower network was used to update the mass consistent

vector wind field.

The measured concentration and prediction of the model at

ground level at 1255 EDT are shown in Figure 12. The calculated

ground level concentration of 241,000 pCi/m3 at Springfield,

South Carolina, is within 38 percent of the experimentally

measured value (389,000pCi/m3). For comparison, a Gaussian

puff analytical model predicted a ground level concentration

of 150,000 pCi/m3; to within 69 percent of the experimental

table.

CONCLUSIONS

The three-dimensional,time-dependent equation of pollutant

transport is calculated using three-dimensional second moments

for advection and cubic splines for diffusion. The method of

moments is a unique quasi-Lagrangian advection scheme which
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produces a minimum of computational damping errors and yields

subgrid-scale resolution for pollutant concentrationswithin a cell

volume. Three-dimensional cubic spline interpolation functions

are used to calculate the first and second derivatives appearing

in the diffusion terms. Both techniques are computationally

efficient and relatively easy to use. The technique of fractional

steps reduces computer programming complexity. Topography is

incorporated into the model by transforming the

governing equations such that surface irregularities in the

physical domain are treated as rectangular cells in the

computational domain.

Mesoscale analysis of the wind field data over SRP is

obtained from the National Weather Service and a network of

instrumented towers situated throughout the 770 square kilometer

area of SRP. The wind data are continuously updated, and the

three dimensional wind field is interpolated to all grid points.

The wind field is made mass consistent by performing a Sasaki

variational analysis over the entire mesh. Lagrangian multipliers

are calculated with a three dimensional strongly implicit pro-

cedure. The velocity components are adjusted at each succeeding

time step.

Model results agree with known analytical solutions for

simple releases under ideal conditions. The three dimensional

numerical results agree with analytical results for ground

level values over smoothly varying terrain. The principle
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advantage of the three dimensional model is its ability to

calculate concentration values for variable wind conditions

over complex terrain without numerical dispersion errors.

The ability of the numerical scheme to simulate an actual

release from SRP was assessed by modeling the May 2, 1974,

accidental release of tritium gas and calculating the trajectory

for six hours. Atmospheric diffusion corresponded to nearly

neutral stability. Horizontal winds were obtained from the

seven tower meso network at SRP. Calculated ground level con-

centration at a distance of 56 km from the source was within 38

percent of the actual measure value; a Gaussian puff analytical

solution gave a value within 69 percent (consideredto be quite

good under such ideal weather conditions). Further generaliza-

tion of the computer code is being undertaken to solve water

transport and engineering reactor problems.
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NOMENCLATURE

az =

c=

co =

Ci =

co’ =

Fi =

fo =

h(x,y) =

H=

Km =

Kt =

.
Kx =

Ky .

error variance in
horizontal velocity

error variance in
vertical velocity

concentration g/m3

mean concentration

zeroth moment (concen-
tration) within cell i

mean concentration just
outside of sol’n domain

turbulent eddy dissi-
pation rate

first moment (concen-
tration) within cell 1

mass flux of concen-
tration at surface

lateral direction

temperature friction
values at the surface

ground elevation at
(X,Y)

elevation of upper
limit for vertical
mixing

height of release

von Karman’s constant

directionally dependent
eddy diffusivity exchange
coefficient of diffusion

exhange coefficient of
momentum

exhange coefficient of
heat

horizontal
(longitudinal)
diffusion

lateral diffusion

K; =

L =

{A} =

A=

[M] =

N=

ih =

iH =

Vg .

~.

Pi =

p.

{q} =

Q=

P=
r.

Ri =

s=

‘a =

y.

At =

~.

vertical diffusion
(turbulence)

Obukhov atmospheric
stability length

column matrix of unknown
values of Lagrangian
multipliers

Lagrangian multiplier

sparse coefficient matrix
containing 7 diagonals

partial differential
equations

unit vector normal to
surface

outwardly directed unit
vector normal to surface

actual settling velocity

longitudinal direction

portioning parameter

deposition velocity

column matrix of explic-
itly known values

continuous emission rates

vertical direction

reflection coefficient

second moment (concen-
tration) within cell i

source and sink terms
associated with precip-
itation, deposition, etc.

standard deviation of
the azimuthal wind
fluctuation

Courant number

time step

nondimensional time
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U* = velocity friction
values at the surface

b= vector velocity field

~ = nondimensional velocity
gradient

~t = nondimensional temper-
ature gradient

~ = transformed vertical
velocity

di = relative displacement
of material within the
ith cell from the center
of the cell

.x w’ ‘ES YrY Ys = W, E, N, S lateral boundaries within the

x,y plane

subscripts

m= momentum

t = temperature

i = cell location

a = azimuth

H = mixing height

i>j,k = finite difference grid at point t,n,P

Supe~seripts

* ** *** . inte~ediate concentration values between n and>>
n+l time step

“ = normalized value
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FIGURE 2. Advection of Concentration (C = 100) in Two Dimensions;
V= (l,l,O); AX= AY=l;At =0.5
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Numerical Solution

FIGURE 5. Advection of Concentration from a Continuous Area Source
(Q = I/cell); U -(1,1,0) ;AX=AY=l, At =0.5
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AnalyticalSolution (Christensen&Prahm, 1976) NumericalSolution

FIGURE 6. Advection-Diffusion of Concentration From an Area Source
(Q = 250/cell); u = (1,0,0); Ky = 0.10; AX = AY = 1; At = 0.5
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FIGURE 7. Topographic Surface for Continuous Elevated Emissions
Prediction
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FIGURE 9. Ground Level Centerline C/Q Values
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FIGURE 10. Synoptic l~ind Field for the Southeast on l“lay2, 1974
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FIGURE 12. Numerical Result at Ground Level at Springfield, South Carolina
for the May 2, 1974, Tritium Release. Initial release time was
approximately 0800 EDT. M = measured value; C = calculated value.
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